VFR Navigation

Från Master Arms Wiki
Hoppa till navigering Hoppa till sök

Home >> Aviation Guides >> VFR Navigation

WIP

VFR, or Visual Flight Rules, is flying & navigating by terrain, landmarks or other visual features outside the aircraft. This guide is intended to help new players with mastering this skill. The guide is divided into three parts - Navigation basics, Flight planning and Follow-up during flight. Flight planning is the planning performed before starting the flight, and follow-up covers methods for continuously verifying that you are where you are meant to be once underway.

Navigation basics

Speed terms

There are several different methods for qualifying an aircraft's speed relative to the air Indicated Air Speed (IAS) is the uncorrected speed which is displayed on an aircraft's airspeed indicator. Multiple factors affect either the air itself or the airspeed instrument causing this airspeed to, genereally speaking, not actually match the aircraft's speed true speed relative to the air. The main error sources are Instrument error (Errors due to the construction / design of the cockpit instrument), Position error (When the positioning of the Pitot tube causes the pressure reading from which the airspeed is calculated to be inaccurate) and Density error (The airspeed instrument is calibrated for standard sea-level density, meaning that it will get less and less accurate as the measured air density decreases with increased altitude)

Calibrated Air Speed (CAS) is the IAS but corrected for instrument and position errors. In real life the airplane manufacturer provides the pilot with the information required to convert IAS to CAS. In DCS this information is rarely inlcuded in manuals - if no information is provided, assume that IAS = CAS.

EAS - Får gärna fyllas i av någon IRL-jet-nörd. Mvh// Flyger-aldrig-över-115-knop

True Air Speed (TAS) is a measure of the aircrafts true speed relative to the air. This is calculated by taking the CAS and correcting for the density error. Some DCS aircraft provide you with the TAS automatically. Calculating the TAS manually can be done with a flight computer (see Resources heading at the bottom). Calculating your TAS manually requires known values for pressure altitude, which is simply the reading on your barometric altimeter with QNH entered as well as the outside air temperature (as the density of the air for a given altitude varies depending on the temperature). The temperature in DCS is generally speaking only given for sea level, so to calculate the temperature for a given altitude use the ISA standard temperature change of 2°C / 1000 feet or 6,5°C per 1000 Meters. ¨

E.g. - if the Sea level temperature is +18°C and you're planning to fly at 8000 feet, the expected change in temperature is 2°C * 8 = -16°C. The outside air temperature is thus +2°C.

Ground speed, or GS, is the actual speed your aircraft is travelling relative to the ground. This is important for navigating as it is this speed we will be using for calculating how long it will take to fly our waypoints later. Ground speed is calculated by taking the true air speed and correcting this for wind. This calculation can be performed using a flight computer or the online E6B tool linked in the resources section.

To perform the calculation, start by entering the true course in the course field. Enter the True Air Speed in the next field. Enter the Wind direction (Where the wind is coming from) and the wind speed and read the wind correction angle below. This angle is the amount of degrees you'll have to add or subtract from your course in order to compensate for wind. You'll now be able to read the ground speed below the Wind correction angle.

Note 1: Since the only source of variation between TAS & GS is the wind, TAS & GS will be equal if flying with no vind Note 2: In DCS, unlike in real life, the wind strength and direction is constant within the same mission. You will still need to calculate the wind correction angle for each leg as the heading of your aircraft relative to the wind affects the WCA.

Course terms

True Magnetic Compass

Track Heading

Wind correction angle

Compass Magnetism

Flight planning

Start by marking your initial point and your destination on the map. Continue by marking waypoints along the route at reasonable intervals. These waypoints act as control points, allowing you to verify that you are flying where you've intended and allowing you to correct and errors before they accumulate too much. I would recommend no more than 20NMI between each waypoint. Generally speaking, shorter legs makes it less likely that you'll get lost, but will also mean that more work is required during the planning phase.

Once you have all your waypoints marked, plot the true track between them. This is the

Follow-up during flight














Resources

Online E6B Flight Computer

https://e6bx.com/e6b/